Technology

CBE – CBVD Techniques history

Chemical Beam Epitaxy (CBE) and related techniques of Metalorganic Molecular Beam Epitaxy (MOMBE) and Gas Source Molecular beam Epitaxy (GSMBE) [1][2] were born in the late 1980’s [3] as a new thin film deposition technique for the III-V semiconductors industry.

CBE, MOMBE and GSMBE are crossbreed techniques merging Chemical Vapour Deposition (CVD) and Molecular Beam Epitaxy (MBE) features.

These technologies take from CVD the chemical reaction of precursor molecules brought in the gas phase to react on the heated substrate to form the film, and from MBE the molecular beam nature of the precursor flows, with line-of-sight molecule trajectories from the sources to the substrate.

For III-V, CBE technologies demonstrated a wide range of advantages [4][5][6][7][8]:

  • easy deposition and doping of complex materials from different precursors
  • high composition and thickness uniformity even on large substrates
  • high precursor conversion rate
  • high growth rates
  • high reproducibility
  • compatibility with UHV characterization techniques
  • compatibility with laser beam patterning, surface selective growth.

Fabrication of several Proof-of-Concept devices [9][10][11][12]  and industrial CBE equipment [13] have been demonstrated.

In parallel to the main work on III-V semiconductor materials, which require a particular chemistry mainly based on alkyl compounds and hydrides, attempts were made to extend the technology to other materials, concentrating on organometallic precursors: materials for Si technologies Si, SixGe1-x [5], FeSi2 [18], single oxides: Al2O3 [19], CdO [20], CeO2 [21] ,CuO [22] , HfO2 [23], MgO [24], SiO2 [25], TiO2 [26] ,Y2O3 [27], ZnO [28], ZrO2 [29], binary oxides: ErSiO [30], LiNbO3 [31], LiTaO3 [32], and complex superconductive oxides like YBCO [33], La2-xBaxCuO4 [34]. These experiments were published either as CBE, MOMBE, or UHV-CVD.

Bibliography

[1] Tsang, J. F. G. D. W. (Ed.), 1997. Chemical Beam Epitaxy and Related Techniques. Wiley, .
[2] Tsang, W. T. (1992). Advances In Movpe, Mbe, and Cbe, Journal of Crystal Growth 120 : brit assoc crystal growth; inst phys; usaf, european off; royal soc;eoleolepichem air prod; sharp labs europe; usa, european res off.
[3] Veuhoff, E.; Pletschen, W.; Balk, P. & Luth, H. (1981). Metalorganic Cvd of Gaas In A Molecular-beam System, Journal of Crystal Growth 55 : 30-34.
[4] Martin, T.; Whitehouse, C. R. & Lane, P. A. (1992). Growth Reactions and Mechanisms In Chemical Beam Epitaxy (cbe), Journal of Crystal Growth 120 : 25-32.
[5] Luth, H. (1994). Chemical Beam Epitaxy – A Child Of Surface Science, Surface Science 299 : 867-877.
[6] Benchimol, J. L.; Alexandre, F.; Lamare, B. & Legay, P. (1996). Benefits of chemical beam epitaxy for micro and optoelectronic applications, Progress In Crystal Growth and Characterization of Materials 33 : 473-495.
[7] Izumi, S.; Shirahama, H. & Kouji, Y. (2001). Environmental safety issues for molecular beam epitaxy platform growth technology, Journal Of Crystal Growth 227 : 150-154.
[8] Ando, H.; Yamaura, S. & Fujii, T. (1996). Recent progress in the multi-wafer CBE system, Journal Of Crystal Growth 164 : 1-15.
[9] CHOA, F. S.; TSANG, W. T.; LOGAN, R. A.; GNALL, R. P.; KOCH, T. L.; BURRUS, C. A.; WU, M. C.; CHEN, Y. K. & KAPRE, R. (1993). Ingaas/ingaasp Integrated Tunable Detector Grown By Chemical Beam Epitaxy, Applied Physics Letters 63 : 1836-1838.
[10] Nutsch, A.; Dahlheimer, B.; Dohr, N.; Kratzer, H.; Lukas, R.; Torabi, B.; Trankle, G.; Abstreiter, G. & Weimann, G. (1998). Chemical beam epitaxy of integrated 1.55 mu m lasers on exact and misoriented (100)-InP substrates, Journal of Crystal Growth 188 : 275-280.
[11] Veuhoff, E. (1998). Potential of MOMBE/CBE for the production of photonic devices in comparison with MOVPE, Journal of Crystal Growth 188 : 231-246.
[12] Lelarge, F.; Dagens, B.; Cuisin, C.; Le Gouezigou, O.; Patriarche, G.; Van Parys, W.; Vanwolleghem, M.; Baets, R. & Gentner, J. L. (2005). GSMBE growth of GaInAsP/InP 1.3 mu m-TM-lasers for monolithic integration with optical waveguide isolator, Journal of Crystal Growth 278 : 709-713.
[13] TSANG, W. T. (1988). Chemical Beam Epitaxy, Ieee Circuits and Devices Magazine 4 : 18-24.
[14] Persson, A. I.; Froberg, L. E.; Jeppesen, S.; Bjork, M. T. & Samuelson, L. (2007). Surface diffusion effects on growth of nanowires by chemical beam epitaxy, Journal of Applied Physics 101 : 034313.
[15] Nunez, C. G.; Brana, A. F.; Pau, J. L.; Ghita, D.; Garcia, B. J.; Shen, G.; Wilbert, D. S.; Kim, S. M. & Kung, P. (2013). Pure zincblende GaAs nanowires grown by Ga-assisted chemical beam epitaxy, Journal of Crystal Growth 372 : 205-212.
[16] Zribi, J.; Morris, D. & Ares, R. (2012). Formation and morphological evolution of InAs quantum dots grown by chemical beam epitaxy, Journal of Vacuum Science \& Technology B 30 : 051207.
[17] Gong, Q.; Notzel, R.; van Veldhoven, P. J.; Eijkemans, T. J. & Wolter, J. H. (2004). Wavelength tuning of InAs quantum dots grown on InP (100) by chemical-beam epitaxy, Applied Physics Letters 84 : 275-277.
[18] Crumbaker, T. E.; Natoli, J. Y.; Berbezier, I. & Derrien, J. (1993). Growth of Beta-fesi2 On Silicon Substrates By Chemical Beam Epitaxy, Journal of Crystal Growth 127 : deut forschungsgemeinsch; minist wissensch \& kunst baden wurttemberg;eoleolmax planck gesell; bayer; daimler benz; degussa; fisons instruments;eoleolhewlett packard; instruments sa; intevec mbe equipment.
[19] Iizuka, H.; Yokoo, K. & Ono, S. (1992). Growth of Single Crystalline Gamma-al2o3 Layers On Silicon By Metalorganic Molecular-beam Epitaxy, Applied Physics Letters 61 : 2978-2980.
[20] Ashrafi, A. B. M. A.; Kumano, H.; Suemune, I.; Ok, Y. W. & Seong, T. Y. (2002). CdO epitaxial layers grown on (001) GaAs surfaces by metalorganic molecular-beam epitaxy, Journal of Crystal Growth 237 : 518-522.
[21] Ikegawa, S. & Motoi, Y. (1996). Growth of CeO2 thin films by metal-organic molecular beam epitaxy, Thin Solid Films 282 : 60-63.
[22] Fritsch, E.; Machler, E.; Arrouy, F.; Berke, H.; Povey, I.; Willmott, P. R. & Locquet, J. P. (1996). Schiff base precursor compounds for the chemical beam epitaxy of oxide thin films .1. Deposition of CuO on MgO[001] using copper(II) bis(benzoylacetone)-ethylendiimine, Journal of Vacuum Science \& Technology A-vacuum Surfaces and Films 14 : 3208-3213.
[23] Hong, J. H.; Moon, T. H. & Myoung, J. M. (2004). Microstructure and characteristics of the HfO2 dielectric layers grown by metalorganic molecular beam epitaxy, Microelectronic Engineering 75 : 263-268.
[24] Niu, F.; Hoerman, B. H. & Wessels, B. W. (2000). Epitaxial thin films of MgO an Si using metalorganic molecular beam epitaxy, Journal of Vacuum Science \& Technology B 18 : 2146-2152.
[25] Bonzel, H. P.; Pirug, G. & Verhasselt, J. (1997). Low temperature growth of SiO2 films on Si(100) using a hot molecular beam of tetraethoxysilane, Chemical Physics Letters 271 : 113-117.
[26] Taylor, C. J.; Gilmer, D. C.; Colombo, D. G.; Wilk, G. D.; Campbell, S. A.; Roberts, J. & Gladfelter, W. L. (1999). Does chemistry really matter in the chemical vapor deposition of titanium dioxide? Precursor and kinetic effects on the microstructure of polycrystalline films, Journal Of The American Chemical Society 121 : 5220-5229.
[27] Fritsch, E.; Machler, E.; Arrouy, F.; Orama, O.; Berke, H.; Povey, I.; Willmott, P. R. & Locquet, J. P. (1997). Benzoylpivaloylmethanide precursors for the chemical beam epitaxy of oxide thin films .1. Synthesis, characterization, and use of yttrium benzoylpivaloylmethanide, Chemistry of Materials 9 : 127-134.
[28] Terasako, T.; Yura, S.; Azuma, S.; Shimomura, S.; Shirakata, S. & Yagi, M. (2009). Comparative study on structural and optical properties of ZnO films grown by metalorganic molecular beam deposition and metalorganic chemical vapor deposition, Journal Of Vacuum Science \& Technology B 27 : 1609-1614.
[29] Kim, M. S.; Ko, Y. D.; Hong, J. H.; Jeong, M. C.; Myoung, J. M. & Yun, I. (2004). Characteristics and processing effects of ZrO2 thin films grown by metal-organic molecular beam epitaxy, Applied Surface Science 227 : 387-398.
[30] Isshiki, H.; Masaki, K.; Ueda, K.; Tateishi, K. & Kimura, T. (2006). Towards epitaxial growth of ErSiO nanostructured crystalline films on Si substrates, Optical Materials 28 : 855-858.
[31] Joshkin, V. A.; Moran, P.; Saulys, D.; Kuech, T. F.; McCaughan, L. & Oktyabrsky, S. R. (2000). Growth of oriented lithium niobate on silicon by alternating gas flow chemical beam epitaxy with metalorganic precursors, Applied Physics Letters 76 : 2125-2127.
[32] Bellman, R. & Raj, R. (1997). Design and performance of a new type of Knudsen cell for chemical beam epitaxy using metal-organic precursors, Vacuum 48 : 165-173.
[33] Endo, K.; Moriyasu, Y.; Teherani, F. H.; Yoshizawa, T.; Badic, P.; Abe, K.; Itoh, J. & Kajimura, K. (2002). Preparation of YBCO superconducting films by MOMBE, Physica C-superconductivity and Its Applications 372 : 604-607.
[34] Machler, E.; Locquet, J. P.; Fritsch, E.; Williams, E. J.; Willmott, P.; Lingenauer, M.; Felder, P.; Huber, J. R. & Berke, H. (1994). Superconducting La2-Xbaxcuo4 Thin-Films Prepared By Chemical Beam Epitaxy, Physica C 235 : 705-706.